

27

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

A Preliminary Study

on Integrating Procedural Content Generation

into Game Development Process

Pratama Wirya Atmaja1

Department of Informatics Engineering, Faculty of

Computer Science

University of Pembangunan Nasional “Veteran” Jawa

Timur Surabaya, Indonesia

pratama_wirya.fik@upnjatim.ac.id

Sugiarto3

Department of Informatics Engineering, Faculty of

Computer Science

University of Pembangunan Nasional “Veteran” Jawa

Timur Surabaya, Indonesia

sugiarto.if@upnjatim.ac.id

Rizky Parlika2

Department of Informatics Engineering, Faculty of

Computer Science
University of Pembangunan Nasional “Veteran” Jawa

Timur Surabaya, Indonesia

rizkyparlika.if@upnjatim.ac.id

Abstract—Digital game industry continues to grow and reap

enormous profit. On the other hand, game development is still a

risky and costly endeavor, and researches on reducing its risks

and costs continue to be important. Procedural content

generation or PCG is the state-of-the-art method to speed up and

automate the production of various game contents, therefore

reducing the said costs and risks. However, how to integrate the

method into the lengthy process of game development is still not

well understood. In this paper we present a preliminary study on

the integration. For the development process, we combine MDA

or Mechanics-Dynamics-Aesthetics framework with SCRUM-

based Agile methodology. The PCG method for our study is for

generating levels of platformer games. We study how the PCG

method would be developed in pre-production and production

phases with the help of two common development tools, Game

Design Document (GDD) and user stories. We discuss our

findings and possible directions of future researches.

Keywords—MDA framework; game development; Agile

methodology; procedural content generation

I. INTRODUCTION

The upward trend of digital game industry cannot be
overstated [1]. It is hard to deny the tremendous financial and
cultural impact of the industry to the world, yet behind the
positive outlook lies a harsh reality of companies and people
who try their best to simply survive in an uncertain and risk-
laden environment. Developing software has never been a
smooth-sailing process for even the largest and most
experienced developers, but it is doubly so when the software
in question is digital games. The need for multi-disciplinary
teams and the prominence of “fun factor” and other non-
functional requirements in digital games prevent game
development from being controlled and measured properly [2].

One contributing factor to the cost of game development is
game contents. As digital games grow ever more complex,
players too demand more and more contents from their favorite
titles. Developing the contents manually is increasingly
becoming inefficient, and this is why procedural content
generation (PCG) is seen as the only way forward. With PCG,
content generation and production can be automated, although
the difficulty of implementing PCG increases sharply with the
complexity of the contents. Level structures [3, 4, 5], object
behaviors [6], object formations [7], graphical assets [8], and
other contents commonly encountered by players have been
generated successfully with PCG.

It is undeniable that PCG is an important tool for game
developers, yet its applications in real game development
projects are still far from optimal and systematic. Many
developers in digital game industry still see PCG as yet another
tool to add to their repertoires. We argue that this point-of-view
needs to change as content production is a fundamental part of
a game development process, and therefore a method that is
able to dramatically change the nature of the production should
be integrated more firmly into the development process.
Treating PCG as “just another tool” can affect the resulting
game products negatively as it will make it hard for developers
to understand and measure its use [9, 10]. This is evidenced by
oppositions to PCG from players who think that PCG ruin the
“fun factor” of their favorite games or even dislike the very
notion of “procedural contents” [11].

In this paper we present a preliminary study on how to
integrate PCG into game development process. To narrow our
scope, we select a specific PCG method for a specific game
genre and content type, which is for generating levels of
platformer games. The design of the method follows
Mechanics-Dynamics-Aesthetics (MDA) framework and the

mailto:pratama_wirya.fik@upnjatim.ac.id
mailto:sugiarto.if@upnjatim.ac.id
mailto:rizkyparlika.if@upnjatim.ac.id

28

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

development process is done under SCRUM framework of
Agile methodology.

A. Agile Methodology and SCRUM

Facing the aforementioned hurdles of game development
process, developers have tried to adapt by implementing less
rigid development methodologies such as Agile [12]. The
highly mutable and subjective requirements of game software
is accommodated by Agile methodology’s spirit and ethics, and
the rise of small and independent game developers also
increases the need for the methodology. SCRUM, Kanban, user
stories, and other methods and tools have been helping Agile
practitioners over the years and success stories can be heard
anywhere [13].

Figure 1 shows a typical SCRUM workflow [14]. Together
with stakeholders, the developer gathers the game’s
requirements in pre-production phase, which are commonly
documented in a Game Design Document (GDD) and
constitute the game’s product backlog. The requirements can
also be translated into user stories to help stakeholders and
members of the development team understand them. The
production phase is composed of short iterations—several
weeks each—called sprints where the developer conducts not
only the implementation but also the testing and design of the
game. The product backlog is translated into sprint backlog,
which contains specific development tasks to bring user stories
into reality. New user stories may be added to the product
backlog as the development team learns new things during the
game’s development process.

B. Mechanics-Dynamics-Aesthetics Framework

The Mechanics-Dynamics-Aesthetics (MDA) framework
has been widely used in game design and development [15].
Under the framework, the design of a game starts from its least
visible aspect, the mechanics, to its most visible, the aesthetics.
The mechanics describe the underlying gameplay rules and
object types, the dynamics describe how the rules and the
objects come into play under specific spatial and temporal
conditions, and the aesthetics describe how players will
observe the dynamics with their senses.

A GDD implementing MDA framework has been proposed
by Mitre-Hernandez et al. [16, 17]. The structure of the
document contains five important chapters as seen in Table 1.

C. Procedural Content Generation of Game Levels

Levels have been one of the most popular content types to
be generated procedurally, dating back to Rogue in 1980.
Different game genres have levels with different
characteristics, although they can be generalized to some
extent. There are many procedural generation methods for
levels, which fall into two basic categories: search-based [18]
and constructive [19]. The first tries to find level arrangements
with good quality based on certain fitness criteria, by utilizing
genetic algorithm or other meta-heuristic approaches. The
second, on the other hand, constructs a level one small part at a

time, avoiding the need for finding and evaluating a large
number of solutions from a vast search space. Other way to
classify PCG methods are by looking at whether a method is
performed at run-time for end-users or within development
process to assist the developer in creating levels. The latter is
mixed-initiative [20] and the end-product of the game may
actually have fixed, non-procedural levels.

From a higher point of view, the generation of a level can
be seen as a two-step process where constructing the level
spatially is the second step. The step proceeding the spatial
construction is designing the player’s possible progression in
the would-be level, which can be done with design tools such
as graphs [21]. Figure 2 shows an example of this two-step
process. All things considered, understanding the steps taken in
procedural generation of levels is crucial in integrating the
generation into the game’s development process.

D. Platformer Games

Platformer games are simple yet addictive and their levels
provide real-time navigational challenges to players. Even in
the age of photorealistic 3D games, 2D platformers are still
widely produced and played. A platformer level consists of
several basic element types, from platforms themselves to
special objects that can be triggered to affect the level
somehow [22]. The spatial structure of a platformer level
typically exhibits “rhythms” not unlike musical rhythms with
rising and descending parts, and this characteristic has been
exploited in PCG . Rhythmical parts of a platformer level can
be seen as “design patterns” that can be applied to create a
wide range of levels with good quality. Three examples of
successful platformer games with procedurally generated levels
are Spelunky, Terraria, and Dead Cells.

II. GATHERING REQUIREMENTS IN GAME DESIGN DOCUMENT

For the purpose of our study we use an example of a
platformer game with procedurally generated levels, which will
be developed under MDA and SCRUM frameworks. At the
start of the pre-production phase the developer writes down the
requirements of the game in a GDD. Following MDA
framework, requirements for the level PCG method are
twofold: mechanics and dynamics requirements. The
mechanics requirements specify what the PCG method can
do—what kind of levels it can generate—and how it will be
evaluated based on its outputs. The dynamics requirements
specify the specific characteristics of each level in the game;
even if every one of them will be generated with the same PCG
method, there will still be differences between them. The
aesthetics requirements, on the other hand, are not specified
because the PCG method will only generate the arrangements
of levels and not the graphics and sounds of the objects in the
levels.

29

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

Fig. 1. A typical SCRUM workflow.

TABLE I. STRUCTURE OF AN MDA-BASED GDD

Chapter

Number
Chapter Title Purpose

1 Overview To describe the game in general

2 Mechanics To describe the mechanics of the game.

3 Dynamics To describe the dynamics of the game.

4 Aesthetics To describe the aesthetics of the game.

5
Player

Experience

To describe the game’s quality aspect; how

the player should experience the game.

Fig. 2. An example of a two-step PCG method using mission graphs for a

dungeon crawler game. The graph nodes represent actions or missions that the

player may undertake, whereas the edges represent ways of moving between

missions. S represents the starting point, C represents a combat, I represents

an item, and E represents an exit. The graph is then converted into a game

map as seen below it, where each mission occupies one room and the rooms

are connected together with corridors.

A. Mechanics Requirements of Level PCG

Using the GDD format as seen in Table 1, the mechanics
requirements for the example game are to be put in Chapter 2.
We define that the level PCG method in the game should
possess these characteristics:

1) The method generates levels at run-time without any
interferences from players nor the developer;

2) The method should be easy to analyze and modify
during the development of the game.

The PCG method will perform two-step level generations
where the first step will be constructing a mission graph. The
graph specification becomes another part of the mechanics
requirements. In the context of a platformer game, the mission
graph nodes may represent the objects in the game. We base
the example platformer game on classic style games such as
Super Mario Bros. The player’s character may walk, run, jump,
and shoot a weapon. Touching enemies hurts the player’s
character, he loses a life when his health is zero and the game
is over when the player’s lives has been depleted.

We define four object types of the game to be generated
procedurally: platforms, enemies, collectible items, and
obstacles. The object specification can be seen in Table 2 and
the nodes of the missions graphs will represent the object types.

B. Dynamics Requirements of Level PCG

Following the convention of Super Mario Bros, the
example game will be composed of “worlds”, each contains a
number of levels. Each world has a unique theme which
dictates the look and feel of its levels, which in turn influences
the level PCG. The example game contains the following three
worlds:

1) The Grassland, where the player starts and everything is
relatively simple and mild;

2) The Jungle, where the levels are more intricate and
confusing and enemies are more difficult;

3) The Mountain, where the levels are more vertically-
inclined and falling down is much more dangerous.

The more detailed specification can be seen in Table 3. The
specification becomes the dynamics requirements that are
written in chapter 3 of the GDD.

C. Quality Requirements of Level PCG

With the complex nature of a PCG method, it is important
that the development team states, from the beginning of the
development process, how the quality of the level PCG will be
measured. For the example platformer game, two
characteristics influence the general quality of the game’s level
PCG:

C

C

S I E

Product Backlog Sprint Backlog

Sprints

Potentially shippable

game

30

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

1) The run-time level generation should be fast enough that
players would not notice it;

2) The generated levels should always be playable (players
should never get stuck in them), properly challenging,
diverse, and look and feel as natural as possible (like
hand-crafted levels).

The developer may also use more detailed quality metrics
of procedurally generated platformer levels such as leniency,
linearity, and pattern density [23]. These quality requirements
should be put in Chapter 5 in the GDD.

III. CREATING USER STORIES AND SPRINT BACKLOG

For a two-step level generation, two modules are necessary:
mission graph generator and spatial level generator. To
generate a mission graph for a level of a certain world, the
generator first takes as an input mission pattern data of said
world. The patterns reflect the dynamics requirements of the
world. The resulting mission graph then becomes an input for
the spatial level generator, which will translate the graph into
an actual, playable level.

The overall structure of the PCG system can be seen in
Figure 3. The main parts of the system are level generator
module, which performs the level generation itself, and level
generation analyzer, which allows the developer to analyze
and evaluate the level generation. With the complex nature of a
PCG method, the analyzer tools are important assets to the
development team.

A. User Stories and Sprint Backlog of Level PCG System

To write user stories of the level PCG system, the
developer needs to understand not only the structure but also
the users and the module dependencies of the system.
Following INVEST principle [12], Agile developers tend to
make user stories as independent to each other as possible.
Fortunately, a typical level PCG system can be treated
separately from other parts of the game development process.
The level PCG system does not need to wait for actual audio
and visual assets of game objects because any placeholder
assets will do. Figure 4 shows the dependencies between
modules in the PCG system. We can see that only one module,
the analysis report creator tool, needs to wait for the
completion of another module before its development may
start. This is because the report creator requires analyzer tool to
feed it analysis data. Every other module depends not on
another module but two encoding conventions: mission graph
and spatial level symbols. These define how the mission graphs
and spatial level constructions are encoded for cross-module
uses. The mission graph nodes can be encoded as ASCII
characters whereas edges between nodes can be represented by
two-dimensional arrays. As defining the encodings may take
very short time, it does not have to have its own user story.

Another concern in an Agile development is choosing the
correct users for user stories, because the stories are supposed
to state real values of the products being developed. Table 4
shows the intended users of the modules of the level PCG
system. Of note are the non-human users of the mission graph
generator, the spatial level generator, and world mission
patterns. The two analysis modules, on the other hand, are

meant to be used by the person in charge of the level PCG
method quality, who may be the game’s lead designer.

The complete user stories, along with their respective sprint
backlog items, for developing the example game’s level PCG
system can be seen in Figure 5 to 9.

TABLE II. OBJECT SPECIFICATION OF THE DEVELOPED GAME

Type Sub-Type Characteristic

Platform

Solid Nothing can pass through it.

Jump-through
The player’s character may jump or

fall through it.

Enemy

Ground
Walks on platforms, is affected by

gravity.

Flying Is not affected by gravity.

Shooting
Shoots projectiles but does not move

at all.

Collectible

item

Coin Increases player’s score.

Bullet Refills player’s ammunition.

Health item
Add one health point to player’s

character

Life Add one life to player’s character.

Obstacle

Bottomless pit
Is placed at the bottom of the level,

kills the player’s character instantly.

Spike Damages the player’s character.

TABLE III. WORLDS SPECIFICATION

World Theme Characteristic

1 Grassland

Bottomless pits and traps are rare.

Platform arrangements are simple and paths to level

exits are easy to find.

Walking enemies are numerous and other enemy types

are rare.

2 Jungle

Dead ends and traps are more numerous

Items are more often hidden and/or hard to reach.

Shooting enemies are more frequent.

3 Mountain

Platform arrangements are much more vertical.

Bottomless pits are much more numerous and wide.

Flying enemies are much more numerous.

31

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

Fig. 3. Structure of the level PCG system.

Fig. 4. Module dependencies in the level PCG system.

TABLE IV. USERS OF THE LEVEL PCG SYSTEM’S MODULES

Module User

Game engine

Lead designer

Fig. 5. User story and sprint backlog item of mission graph generator.

Fig. 6. User story and sprint backlog item of spatial level generator.

Level PCG
system

Level
generator

Mission graph
generator

Spatial level
generator

World 1
mission
patterns

World 2
mission
patterns

World 3
mission
patterns

Level
generation
analyzer

Analyzer tool

Analysis
report creator

tool

World 1-3

mission

patterns

Mission

graph

generator

Mission

graph

generator

Spatial

level

generator

Spatial

level

generator

Analyzer

tool

Analysis

report creator

tool

As a spatial level generator, I want to read, as
my inputs, mission graphs so I can generate

levels based on them.

Conditions of Satisfaction:
 The mission graphs are always playable.
 The mission graphs are always properly

challenging.
 The mission graphs always feel as

natural as hand-crafted ones.
 The mission graphs are diverse enough.
 The mission graph generation is fast

enough to be applied at run-time.

Programmer: Implement an algorithm for
generation of mission graphs which takes the
appropriate world’s mission patterns as inputs.

Programmer: Test and tune the mission graph

algorithm.

As the game engine, I want to present

procedurally generated levels to players.

Conditions of Satisfaction:

 The generated levels are accurate

with regards to the mission graphs

they are based upon.

 Level generation is fast enough to be

applied at run-time.

Programmer: Implement algorithm for

generation of levels based on mission

graphs.

Programmer: Test and tune the generation

algorithm.

Mission graph

generator

Spatial level

generator

World 1-3

mission patterns

Analyzer tool
Analysis report

creator tool

Mission graph

encoding

Spatial level

encoding

32

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

Fig. 7. User story and sprint backlog item of mission patterns of worlds.

Fig. 8. User story and sprint backlog item of analyzer tool. The test metrics

in CoS and sprint backlog are taken from the quality metrics in chapter 5 of

the GDD.

Fig. 9. User story and sprint backlog item of analysis report creator tool.

B. Testing and Refining the Level PCG System

The level generator modules need to be tested and Figure
10 shows a user story and sprint backlog item for the test. The
lead designer performs analysis and evaluation based on the
test results from testers and also by using the analyzer tool
module. Because the test is ultimately aimed at improving the
level PCG as a whole, the “user” in the story is one who will
benefit from it, which in this case is a would-be player of the
game.

With each subsequent sprint, the development team
understands more and more of how to refine the level PCG
until it is ready for release. New level PCG user stories may be
created for the next sprints based on the results of analysis and
evaluation. For example, if the player’s missions are not
diverse enough, the actions to address the problem may be:

1) Increasing the quality and/or quantity of mission
patterns of the related worlds;

2) Modifying the mission graph generator so that it
produces more diverse missions;

3) Adding a new “spatial level pattern” modules which
work on the same principle as the mission patterns but
for guiding the spatial level generator;

4) Other actions.

The user story and sprint backlog item for the first action
can be seen in Figure 11.

As a mission graph generator, I want to

read World 1/2/3 mission patterns to
guide me in generating mission graphs

for the world.

Conditions of Satisfaction:

 The mission patterns are diverse

enough.

 The mission patterns have good “fun

factor”.

 The mission patterns are properly

challenging.

Designer: Design the world’s mission

patterns as graphs.

Programmer: Translate the missions

pattern graphs into machine-readable

data.

As the lead designer of the game, I want

to analyze and evaluate the level PCG

with a GUI-based analyzer tool.

Conditions of Satisfaction:

 The tool’s GUI must be easy to use

and understand.

 The tool must be able to save

analysis and evaluation data.

 The tool must allow the level

generation to be tested on [insert
metric].

 Programmer: Code the GUI of the

analyzer tool.

Programmer: Code the functions for

testing [insert metric].

As the lead designer of the game, I want
to read reports on the characteristics and

performance of the level PCG.

Conditions of Satisfaction:

 The report softcopies must be in PDF

and spreadsheet formats.

 The reports must be easy to retrieve.

 The reports must be printable.

 The printed reports must be easy to

read.

 Programmer: Code a tool for translating

analysis and evaluation data of level PCG

into PDF and spreadsheet formats and

printing the data.

33

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

Fig. 10. User story and sprint backlog item of testing the level PCG.

IV. CONCLUSIONS

We have presented a preliminary study on how to integrate
procedural level generation method into a game development
process so that the method may be managed well during the
process. We have used a level PCG method for a platformer
game as an example and we have studied how the method’s
mechanics and dynamics requirements may be gathered and
documented in GDD and turned into proper user stories in
accordance with common user story principles.

Fig. 11. User story and sprint backlog item of refining the mission patterns.

Future researches may explore deeper into the topic by
studying a more complete development process of a game with
PCG method, under SCRUM or other development
methodologies and frameworks such as Extreme Programming
and Waterfall. Other kinds of procedural contents such as
storylines and game rules are also interesting topics, as well as
mixed-initiative PCG methods.

REFERENCES

[1] J. Batchelor, "Games industry generated $108.4bn in revenues in 2017,"

Gamer Network, 31 January 2018. [Online]. Available: https://

www.gamesindustry.biz/articles/2018-01-31-games-industry-generated-

usd108-4bn-in-revenues-in-2017. [Accessed 2 September 2018].

[2] D. Callele and E. Neufeld, "Requirements Engineering and Creative

Process in the Video Game Industry," in Proceedings of the 2005 13th

IEEE International Conference on Requirements Engineering, 2005.

[3] A. Liapis, "Multi-segment Evolution of Dungeon Game Levels," in

Proceedings of the Genetic and Evolutionary Computation Conference,

Berlin, Germany, 2017.

[4] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith and S. Risi, "Evolving

mario levels in the latent space of a deep convolutional generative

adversarial network," in GECCO '18 Proceedings of the Genetic and

Evolutionary Computation Conference, Kyoto, Japan, 2018.

[5] M. Stephenson and J. Renz, "Procedural generation of complex stable

structures for angry birds levels," in 2016 IEEE Conference on

Computational Intelligence and Games (CIG), 2016.

[6] K. Siu, E. Butler and A. Zook, "A Programming Model for Boss

Encounters in 2D Action Games," in Twelfth Artificial Intelligence and

Interactive Digital Entertainment Conference, 2016.

[7] A. Khalifa, S. Lee, A. Nealen and J. Togelius, "Talakat: bullet hell

generation through constrained map-elites," in Proceedings of the Genetic

and Evolutionary Computation Conference, Kyoto, Japan, 2018.

[8] A. Liapis, "Exploring the Visual Styles of Arcade Game Assets," in

Proceedings of Evolutionary and Biologically Inspired Music, Sound, Art

and Design (EvoMusArt), 2016.

[9] D. Aversa, "A call for a more meaningful Procedural Content

Generation," 27 November 2017. [Online]. Available:

https://www.gamasutra.com/

blogs/DavideAversa/20171127/310426/A_call_for_a_more_meaningful_

Procedural_Content_Generation.php. [Accessed 30 July 2019].

[10] A. Bradley, "Devs weigh in on the best ways to use (but not abuse)

procedural generation," 12 March 2018. [Online]. Available:

https://www.gamasutra.com/view/news/315400/Devs_weigh_in_on_the_

best_ways_to_use_but_not_abuse_procedural_generation.php. [Accessed

30 July 2019].

[11] G. N. Yannakakis and J. Togelius, "Experience-driven procedural content

generation," in 2015 International Conference on Affective Computing

and Intelligent Interaction, 2015.

[12] C. Keith, Agile Game Development with Scrum, Addison-Wesley, 2010.

As a player, I want to play procedurally

generated levels of good quality.

Conditions of Satisfaction:

 The generated levels are always

playable.
 The generated levels are always

properly challenging.

 The generated levels always feel as

natural as hand-crafted ones.

 The generated levels are diverse

enough.

 The level generation is fast enough.

Lead designer: Write a test plan for level

generator.

Tester: Test the level generator.

Lead designer: Analyze and evaluate test

results.

As the mission graph generator, I want to

read, as my inputs, World 1/2/3 mission

patterns.

Conditions of Satisfaction:

 The mission patterns are twice as
diverse as before.

 The mission patterns have good “fun

factor”.

 The mission patterns are properly

challenging.

Designer: Design more mission patterns

as graphs.

Programmer: Translate the missions

pattern graphs into machine-readable

data.

34

International Journal of Computer, Network Security and Information System (IJCONSIST)

Vol: 1, Issue: 1, September 2019, pp. 27-34

[13] P. Serrador and J. K. Pinto, "Does Agile work? — A quantitative analysis

of agile project success," International Journal of Project Management,

vol. 33, no. 5, pp. 1040-1051, July 2015.

[14] G. S. Matharu, A. Mishra, H. Singh and P. Upadhyay, "Empirical Study

of Agile Software Development Methodologies: A Comparative

Analysis," ACM SIGSOFT Software Engineering Notes, vol. 40, no. 1,

pp. 1-6, January 2015.

[15] R. Hunicke, M. Leblanc and R. Zubek, "MDA: A formal approach to

game design and game research," in Workshop on Challenges in Game

AI, 2004.

[16] M. G. Salazar, H. A. Mitre, C. L. Olalde and J. L. G. Sánchez, "Proposal

of Game Design Document from software engineering requirements

perspective," in 2012 17th International Conference on Computer Games

(CGAMES), 2012.

[17] H. A. Mitre-Hernandez, C. Lara-Alvarez, M. Gonzalez-Salazar and D.

Martin, "Decreasing Rework in Video Games Development from a

Software Engineering Perspective," in 4th International Conference on

Software Proceess Improvement, 2015.

[18] J. Togelius and N. Shaker, "The search-based approach," in Procedural

Content Generation in Games, Springer International Publishing, 2016,

pp. 17-30.

[19] N. Shaker, J. Togelius, A. Liapis, R. Lopes and R. Bidarra, "Constructive

generation methods for dungeons and levels," in Procedural Content

Generation in Games, 1st ed., Springer International Publishing, 2016,

pp. 31-55.

[20] A. Liapis, G. Smith and N. Shaker, "Mixed-initiative content creation," in

Procedural Content Generation in Games, Springer International

Publishing, 2016, pp. 195-214.

[21] D. Karavolos, A. Liapis and G. N. Yannakakis, "Evolving Missions to

Create Game Spaces," in 2016 IEEE Conference on Computational

Intelligence and Games (CIG), Santorini, Greece, 2016.

[22] G. Smith, M. Cha and J. Whitehead, "A framework for analysis of 2D

platformer levels," in Proceedings of the 2008 ACM SIGGRAPH

symposium on Video games, Los Angeles, 2008.

[23] J. R. H. Mariño, W. M. P. Reis and L. H. S. Lelis, "An Empirical

Evaluation of Evaluation Metrics of Procedurally Generated Mario

Levels," in Proceedings, The Eleventh AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, 2015.

